Média Móvel Exponencial - EMA BREAKING DOWN Média Móvel Exponencial - EMA As EMAs de 12 e 26 dias são as médias de curto prazo mais populares e são usadas para criar indicadores como a divergência de convergência média móvel (MACD) eo oscilador de preço percentual (PPO). Em geral, as EMA de 50 e 200 dias são usadas como sinais de tendências de longo prazo. Traders que empregam análise técnica encontrar médias móveis muito útil e perspicaz quando aplicado corretamente, mas criar havoc quando usado de forma inadequada ou são mal interpretados. Todas as médias móveis normalmente utilizadas na análise técnica são, pela sua própria natureza, indicadores atrasados. Conseqüentemente, as conclusões tiradas da aplicação de uma média móvel a um gráfico de mercado específico devem ser para confirmar um movimento de mercado ou para indicar sua força. Muitas vezes, quando uma linha de indicadores de média móvel fez uma alteração para refletir uma mudança significativa no mercado, o ponto ótimo de entrada no mercado já passou. Um EMA serve para aliviar este dilema em certa medida. Porque o cálculo EMA coloca mais peso sobre os dados mais recentes, ele abraça a ação de preço um pouco mais apertado e, portanto, reage mais rápido. Isto é desejável quando um EMA é usado para derivar um sinal de entrada de negociação. Interpretando a EMA Como todos os indicadores de média móvel, eles são muito mais adequados para mercados de tendências. Quando o mercado está em uma tendência de alta forte e sustentada. A linha de indicador EMA também mostrará uma tendência de alta e vice-versa para uma tendência de baixa. Um comerciante vigilante não só prestar atenção à direção da linha EMA, mas também a relação da taxa de mudança de uma barra para a próxima. Por exemplo, à medida que a ação de preço de uma forte tendência de alta começar a se nivelar e reverter, a taxa de mudança da EMA de uma barra para a próxima começará a diminuir até que a linha de indicador se aplana ea taxa de mudança seja zero. Devido ao efeito retardado, por este ponto, ou mesmo algumas barras antes, a ação do preço deve já ter invertido. Portanto, segue-se que a observação de uma diminuição consistente da taxa de variação da EMA poderia ser utilizada como um indicador que pudesse contrariar o dilema causado pelo efeito retardado das médias móveis. Usos comuns do EMA EMAs são comumente usados em conjunto com outros indicadores para confirmar movimentos significativos do mercado e para avaliar a sua validade. Para os comerciantes que negociam intraday e mercados em rápido movimento, o EMA é mais aplicável. Muitas vezes os comerciantes usam EMAs para determinar um viés de negociação. Por exemplo, se um EMA em um gráfico diário mostra uma forte tendência ascendente, uma estratégia de comerciantes intraday pode ser a negociação apenas a partir do lado longo em um gráfico intraday. Moving Parâmetros Média Três parâmetros de média móvel Assim, você deseja adicionar uma média móvel em Seus gráficos. Quais são os parâmetros que você tem que definir ou escolher Há apenas alguns (três): Os preços que serão usados para calcular a média: fechar, média de alta e baixa, média de alta, baixa e fechar, etc. Duração do período da média móvel quantas barras serão usadas para calcular a média móvel, ou em outras palavras quantas barras de volta queremos olhar para cada momento. Tipo de média móvel a fórmula utilizada: simples vs. exponencial vs. outros tipos. Let8217s agora explorar cada um dos parâmetros. Parâmetro 1: Preço Usado para Moving Average Cálculo Normalmente, as pessoas usam cada bar8217s preço de fechamento para calcular médias móveis. Em muitos casos, isso se justifica pelo papel especial que o preço de fechamento tem. Por exemplo, todos os dias o preço de fechamento de um índice de ações representa o consenso do mercado de ações no final desse dia de negociação, quando os comerciantes estão fechando suas posições intraday e preparando suas carteiras para a noite quando eles não estarão olhando para o mercado. Por outro lado, os preços de fechamento de barras são muito menos significativos em gráficos intraday as informações sobre a que preço o mercado estava negociando exatamente no final de um determinado período de 5 ou 10 minutos durante o dia tem pouco significado para a maioria dos participantes do mercado. Portanto, você pode olhar métodos alternativos de cálculo de médias móveis quando você está trabalhando com dados intraday: médias móveis podem ser calculadas a partir das médias de alta e baixa de cada barra, ou a partir do chamado preço típico (a média de alta, baixa , E fechar), ou da média dos quatro preços (aberto, alto, baixo e fechar). Parâmetro 2: Duração média do período móvel O comprimento da média móvel ou mais precisamente o número de barras incluídas no cálculo da média móvel é provavelmente o mais discutido dos três parâmetros. Você pode calcular a média móvel de apenas alguns (por exemplo, 8) barras de preços mais recentes e você verá que ele reage muito rapidamente a cada pequena mudança na direção do mercado. Como alternativa, você pode incluir dezenas ou centenas de barras de preços no cálculo (por exemplo, 200 barras é uma configuração popular). Desta forma, você irá filtrar todo o bar-to-bar ruído a média móvel longo período irá refletir apenas o significativo, a longo prazo tendências de preços. Além de olhar para o número de bares. Você naturalmente também tem que levar em consideração quanto tempo cada barra é. Enquanto 10 barras representam 2 semanas em um gráfico diário, eles são menos de uma hora em um gráfico de 5 minutos. Não existe comprimento ideal de média móvel. Como diferentes estilos comerciais e estratégias exigem olhar para informações diferentes. O problema de encontrar um bom período de média móvel foi discutido aqui: Moving Average Period. Parâmetro 3: Tipo de média móvel O tipo de média móvel mais comum é a média móvel simples. Como o próprio nome sugere, também é o mais simples de calcular e entender (que provavelmente é a principal razão pela qual é o mais popular). A média móvel simples é (simplesmente) a média aritmética das últimas N barras (N é o período de média móvel discutido acima). Você resume N preços mais recentes e divide o resultado por N. Além da média móvel simples, existem outros tipos. Existem apenas pequenas variações nas fórmulas e às vezes é difícil dizer que tipo de média móvel é apenas olhando para um gráfico. Por exemplo, a média móvel exponencial coloca mais peso aos preços mais recentes e, portanto, parece estar reagindo um pouco mais rápido às mudanças de preços em comparação com a média móvel simples. Outros tipos de média móvel frequentemente utilizados incluem a média móvel dos mínimos quadrados. Média móvel adaptativa. Ou média móvel ponderada. Se você é criativo e bom com números, você pode mesmo projetar seus próprios métodos proprietários (entretanto, a utilidade de tal esforço é questionável, dado as poucas diferenças e pouca informação extra que você obtem). Quais parâmetros de média móvel para usar Se você não tiver feito muitos testes quantitativos e não tem idéia de qual método de cálculo de média móvel pode ser eficaz para sua abordagem de negociação, gostaria de sugerir que você comece com o muito básico. Tome a média móvel simples calculada a partir dos preços de fechamento (esta é a configuração que o seu software de gráficos provavelmente tem como padrão) e concentre sua energia em encontrar um bom período de média móvel. Também tenha em mente que a média móvel é apenas uma ferramenta, apenas uma parte da análise, e você provavelmente precisará incluir outras coisas (como os fundamentos, volume ou ação de preço) em sua tomada de decisão para construir uma estratégia de negociação de som. Ao permanecer neste site e / ou usar o conteúdo do Macroption, você confirma que leu e concordou com os Termos de Uso do Acordo como se o tivesse assinado. O Acordo também inclui Política de Privacidade e Política de Cookies. Se você não concordar com qualquer parte deste Contrato, por favor, deixe o site agora. Todas as informações são apenas para fins educacionais e podem ser imprecisas, incompletas, ultrapassadas ou erradas. A Macroption não se responsabiliza por quaisquer danos resultantes da utilização do conteúdo. Nenhum conselho financeiro, de investimento ou de negociação é dado a qualquer momento. Copiar 2017 MacroptionMoving modelos de suavização média e exponencial Como um primeiro passo para ir além dos modelos de média, modelos de caminhada aleatória e modelos de tendência linear, padrões e tendências não sazonais podem ser extrapolados usando um modelo de média móvel ou suavização. A suposição básica por trás dos modelos de média e suavização é que a série temporal é estacionária localmente com uma média lentamente variável. Assim, tomamos uma média móvel (local) para estimar o valor atual da média e, em seguida, usá-lo como a previsão para o futuro próximo. Isto pode ser considerado como um compromisso entre o modelo médio eo modelo randômico-sem-deriva. A mesma estratégia pode ser usada para estimar e extrapolar uma tendência local. Uma média móvel é chamada frequentemente uma versão quotsmoothedquot da série original porque a média de curto prazo tem o efeito de alisar para fora os solavancos na série original. Ajustando o grau de suavização (a largura da média móvel), podemos esperar encontrar algum tipo de equilíbrio ótimo entre o desempenho dos modelos de caminhada média e aleatória. O tipo mais simples de modelo de média é o. Média Móvel Simples (igualmente ponderada): A previsão para o valor de Y no tempo t1 que é feita no tempo t é igual à média simples das observações m mais recentes: (Aqui e em outro lugar usarei o símbolo 8220Y-hat8221 para ficar Para uma previsão da série de tempo Y feita o mais cedo possível antes de um determinado modelo). Esta média é centrada no período t (m1) 2, o que implica que a estimativa da média local tende a ficar aquém do verdadeiro Valor da média local em cerca de (m1) 2 períodos. Dessa forma, dizemos que a idade média dos dados na média móvel simples é (m1) 2 em relação ao período para o qual a previsão é calculada: é a quantidade de tempo que as previsões tendem a ficar atrás de pontos de viragem nos dados . Por exemplo, se você estiver calculando a média dos últimos 5 valores, as previsões serão cerca de 3 períodos atrasados em responder a pontos de viragem. Observe que se m1, o modelo de média móvel simples (SMA) é equivalente ao modelo de caminhada aleatória (sem crescimento). Se m é muito grande (comparável ao comprimento do período de estimação), o modelo SMA é equivalente ao modelo médio. Como com qualquer parâmetro de um modelo de previsão, é costume ajustar o valor de k para obter o melhor quotfitquot aos dados, isto é, os erros de previsão mais baixos em média. Aqui está um exemplo de uma série que parece apresentar flutuações aleatórias em torno de uma média de variação lenta. Primeiro, vamos tentar encaixá-lo com um modelo de caminhada aleatória, o que equivale a uma média móvel simples de 1 termo: O modelo de caminhada aleatória responde muito rapidamente às mudanças na série, mas ao fazê-lo escolhe grande parte do quotnoisequot no Dados (as flutuações aleatórias), bem como o quotsignalquot (a média local). Se preferirmos tentar uma média móvel simples de 5 termos, obtemos um conjunto de previsões mais suaves: a média móvel simples de 5 períodos produz erros significativamente menores do que o modelo de caminhada aleatória neste caso. A idade média dos dados nessa previsão é 3 ((51) 2), de modo que ela tende a ficar atrás de pontos de viragem em cerca de três períodos. (Por exemplo, uma desaceleração parece ter ocorrido no período 21, mas as previsões não virar até vários períodos mais tarde.) Observe que as previsões de longo prazo do modelo SMA são uma linha reta horizontal, assim como na caminhada aleatória modelo. Assim, o modelo SMA assume que não há tendência nos dados. No entanto, enquanto as previsões a partir do modelo de caminhada aleatória são simplesmente iguais ao último valor observado, as previsões do modelo SMA são iguais a uma média ponderada de valores recentes. Os limites de confiança calculados pela Statgraphics para as previsões de longo prazo da média móvel simples não se alargam à medida que o horizonte de previsão aumenta. Isto obviamente não é correto Infelizmente, não há uma teoria estatística subjacente que nos diga como os intervalos de confiança devem se ampliar para este modelo. No entanto, não é muito difícil calcular estimativas empíricas dos limites de confiança para as previsões de longo prazo. Por exemplo, você poderia configurar uma planilha na qual o modelo SMA seria usado para prever 2 passos à frente, 3 passos à frente, etc. dentro da amostra de dados históricos. Você poderia então calcular os desvios padrão da amostra dos erros em cada horizonte de previsão e então construir intervalos de confiança para previsões de longo prazo adicionando e subtraindo múltiplos do desvio padrão apropriado. Se tentarmos uma média móvel simples de 9 termos, obteremos previsões ainda mais suaves e mais de um efeito retardado: A idade média é agora de 5 períodos ((91) 2). Se tomarmos uma média móvel de 19 períodos, a idade média aumenta para 10: Observe que, na verdade, as previsões estão agora atrasadas por volta dos pontos de inflexão por cerca de 10 períodos. A quantidade de suavização é melhor para esta série Aqui está uma tabela que compara suas estatísticas de erro, incluindo também uma média de 3-termo: Modelo C, a média móvel de 5-termo, rende o menor valor de RMSE por uma pequena margem sobre o 3 E médias de 9-termo, e suas outras estatísticas são quase idênticas. Assim, entre modelos com estatísticas de erro muito semelhantes, podemos escolher se preferiríamos um pouco mais de resposta ou um pouco mais de suavidade nas previsões. O modelo de média móvel simples descrito acima tem a propriedade indesejável de tratar as últimas k observações de forma igual e ignora completamente todas as observações anteriores. (Voltar ao início da página.) Browns Simple Exponential Smoothing (média ponderada exponencialmente ponderada) Intuitivamente, os dados passados devem ser descontados de forma mais gradual - por exemplo, a observação mais recente deve ter um pouco mais de peso que a segunda mais recente, ea segunda mais recente deve ter um pouco mais de peso do que a 3ª mais recente, e em breve. O modelo de suavização exponencial simples (SES) realiza isso. Vamos 945 denotar uma constante quotsmoothingquot (um número entre 0 e 1). Uma maneira de escrever o modelo é definir uma série L que represente o nível atual (isto é, o valor médio local) da série, conforme estimado a partir dos dados até o presente. O valor de L no tempo t é calculado recursivamente a partir de seu próprio valor anterior como este: Assim, o valor suavizado atual é uma interpolação entre o valor suavizado anterior e a observação atual, onde 945 controla a proximidade do valor interpolado para o mais recente observação. A previsão para o próximo período é simplesmente o valor suavizado atual: Equivalentemente, podemos expressar a próxima previsão diretamente em termos de previsões anteriores e observações anteriores, em qualquer uma das seguintes versões equivalentes. Na primeira versão, a previsão é uma interpolação entre previsão anterior e observação anterior: Na segunda versão, a próxima previsão é obtida ajustando a previsão anterior na direção do erro anterior por uma fração 945. é o erro feito em Tempo t. Na terceira versão, a previsão é uma média móvel exponencialmente ponderada (ou seja, descontada) com o fator de desconto 1- 945: A versão de interpolação da fórmula de previsão é a mais simples de usar se você estiver implementando o modelo em uma planilha: Célula única e contém referências de células que apontam para a previsão anterior, a observação anterior ea célula onde o valor de 945 é armazenado. Observe que se 945 1, o modelo SES é equivalente a um modelo de caminhada aleatória (sem crescimento). Se 945 0, o modelo SES é equivalente ao modelo médio, assumindo que o primeiro valor suavizado é definido igual à média. A idade média dos dados na previsão de suavização exponencial simples é de 1 945 em relação ao período para o qual a previsão é calculada. (Isso não é suposto ser óbvio, mas pode ser facilmente demonstrado pela avaliação de uma série infinita.) Portanto, a previsão média móvel simples tende a ficar para trás de pontos de viragem em cerca de 1 945 períodos. Por exemplo, quando 945 0,5 o atraso é 2 períodos quando 945 0,2 o atraso é de 5 períodos quando 945 0,1 o atraso é de 10 períodos, e assim por diante. Para uma determinada idade média (isto é, a quantidade de atraso), a previsão de suavização exponencial simples (SES) é um pouco superior à previsão de média móvel simples (SMA) porque coloca relativamente mais peso na observação mais recente - i. e. É ligeiramente mais quotresponsivequot às mudanças que ocorrem no passado recente. Por exemplo, um modelo SMA com 9 termos e um modelo SES com 945 0,2 têm uma idade média de 5 para os dados nas suas previsões, mas o modelo SES coloca mais peso nos últimos 3 valores do que o modelo SMA e no modelo SMA. Uma outra vantagem importante do modelo SES sobre o modelo SMA é que o modelo SES usa um parâmetro de suavização que é continuamente variável, de modo que pode ser otimizado com facilidade Usando um algoritmo quotsolverquot para minimizar o erro quadrático médio. O valor óptimo de 945 no modelo SES para esta série revela-se 0.2961, como mostrado aqui: A idade média dos dados nesta previsão é 10.2961 3.4 períodos, que é semelhante ao de uma média móvel simples de 6-termo. As previsões a longo prazo do modelo SES são uma linha reta horizontal. Como no modelo SMA e no modelo randômico sem crescimento. No entanto, note que os intervalos de confiança calculados por Statgraphics agora divergem de uma forma razoável, e que eles são substancialmente mais estreitos do que os intervalos de confiança para o modelo de caminhada aleatória. O modelo SES assume que a série é um tanto quotmore previsível do que o modelo de caminhada aleatória. Um modelo SES é realmente um caso especial de um modelo ARIMA. Portanto a teoria estatística dos modelos ARIMA fornece uma base sólida para o cálculo de intervalos de confiança para o modelo SES. Em particular, um modelo SES é um modelo ARIMA com uma diferença não sazonal, um termo MA (1) e nenhum termo constante. Também conhecido como modelo quotARIMA (0,1,1) sem constantequot. O coeficiente MA (1) no modelo ARIMA corresponde à quantidade 1-945 no modelo SES. Por exemplo, se você ajustar um modelo ARIMA (0,1,1) sem constante para a série aqui analisada, o coeficiente MA estimado (1) resulta ser 0,7029, que é quase exatamente um menos 0,2961. É possível adicionar a hipótese de uma tendência linear constante não-zero para um modelo SES. Para fazer isso, basta especificar um modelo ARIMA com uma diferença não sazonal e um termo MA (1) com uma constante, ou seja, um modelo ARIMA (0,1,1) com constante. As previsões a longo prazo terão então uma tendência que é igual à tendência média observada durante todo o período de estimação. Você não pode fazer isso em conjunto com o ajuste sazonal, porque as opções de ajuste sazonal são desativadas quando o tipo de modelo é definido como ARIMA. No entanto, você pode adicionar uma tendência exponencial de longo prazo constante a um modelo de suavização exponencial simples (com ou sem ajuste sazonal) usando a opção de ajuste de inflação no procedimento de Previsão. A taxa apropriada de inflação (crescimento percentual) por período pode ser estimada como o coeficiente de declive num modelo de tendência linear ajustado aos dados em conjunto com uma transformação de logaritmo natural, ou pode basear-se em outra informação independente sobre as perspectivas de crescimento a longo prazo . (Voltar ao início da página.) Browns Linear (ie duplo) Suavização exponencial Os modelos SMA e SES assumem que não há tendência de qualquer tipo nos dados (o que normalmente é OK ou pelo menos não muito ruim para 1- Antecipadamente quando os dados são relativamente ruidosos), e podem ser modificados para incorporar uma tendência linear constante como mostrado acima. O que acontece com as tendências de curto prazo Se uma série exibir uma taxa de crescimento variável ou um padrão cíclico que se destaque claramente contra o ruído, e se houver uma necessidade de prever mais do que um período à frente, a estimativa de uma tendência local também pode ser um problema. O modelo de suavização exponencial simples pode ser generalizado para obter um modelo linear de suavização exponencial (LES) que calcula estimativas locais de nível e tendência. O modelo de tendência de variação de tempo mais simples é o modelo de alisamento exponencial linear de Browns, que usa duas séries suavizadas diferentes que são centradas em diferentes pontos do tempo. A fórmula de previsão é baseada em uma extrapolação de uma linha através dos dois centros. (Uma versão mais sofisticada deste modelo, Holt8217s, é discutida abaixo.) A forma algébrica do modelo de suavização exponencial linear de Brown8217s, como a do modelo de suavização exponencial simples, pode ser expressa em um número de formas diferentes mas equivalentes. A forma quotstandard deste modelo é usualmente expressa da seguinte maneira: Seja S a série de suavização simples obtida aplicando-se a suavização exponencial simples à série Y. Ou seja, o valor de S no período t é dado por: (Lembre-se que, Exponencial, esta seria a previsão para Y no período t1.) Então deixe Squot denotar a série duplamente-alisada obtida aplicando a suavização exponencial simples (usando o mesmo 945) à série S: Finalmente, a previsão para Y tk. Para qualquer kgt1, é dado por: Isto resulta em e 1 0 (isto é, enganar um pouco, e deixar a primeira previsão igual à primeira observação real) e e 2 Y 2 8211 Y 1. Após o que as previsões são geradas usando a equação acima. Isto produz os mesmos valores ajustados que a fórmula baseada em S e S se estes últimos foram iniciados utilizando S 1 S 1 Y 1. Esta versão do modelo é usada na próxima página que ilustra uma combinação de suavização exponencial com ajuste sazonal. Holt8217s Linear Exponential Smoothing Brown8217s O modelo LES calcula as estimativas locais de nível e tendência ao suavizar os dados recentes, mas o fato de que ele faz isso com um único parâmetro de suavização coloca uma restrição nos padrões de dados que é capaz de ajustar: o nível ea tendência Não podem variar em taxas independentes. Holt8217s modelo LES aborda esta questão, incluindo duas constantes de alisamento, um para o nível e um para a tendência. Em qualquer momento t, como no modelo Brown8217s, existe uma estimativa L t do nível local e uma estimativa T t da tendência local. Aqui eles são calculados recursivamente a partir do valor de Y observado no tempo t e as estimativas anteriores do nível e tendência por duas equações que aplicam alisamento exponencial para eles separadamente. Se o nível estimado ea tendência no tempo t-1 são L t82091 e T t-1. Respectivamente, então a previsão para Y tshy que teria sido feita no tempo t-1 é igual a L t-1 T t-1. Quando o valor real é observado, a estimativa atualizada do nível é calculada recursivamente pela interpolação entre Y tshy e sua previsão, L t-1 T t-1, usando pesos de 945 e 1-945. A mudança no nível estimado, Nomeadamente L t 8209 L t82091. Pode ser interpretado como uma medida ruidosa da tendência no tempo t. A estimativa actualizada da tendência é então calculada recursivamente pela interpolação entre L t 8209 L t82091 e a estimativa anterior da tendência, T t-1. Usando pesos de 946 e 1-946: A interpretação da constante de suavização de tendência 946 é análoga à da constante de suavização de nível 945. Modelos com valores pequenos de 946 assumem que a tendência muda apenas muito lentamente ao longo do tempo, enquanto modelos com Maior 946 supor que está mudando mais rapidamente. Um modelo com um 946 grande acredita que o futuro distante é muito incerto, porque os erros na tendência-estimativa tornam-se completamente importantes ao prever mais de um período adiante. As constantes de suavização 945 e 946 podem ser estimadas da maneira usual minimizando o erro quadrático médio das previsões de 1 passo à frente. Quando isso é feito em Statgraphics, as estimativas se tornam 945 0,3048 e 946 0,008. O valor muito pequeno de 946 significa que o modelo assume muito pouca mudança na tendência de um período para o outro, então basicamente este modelo está tentando estimar uma tendência de longo prazo. Por analogia com a noção de idade média dos dados que é utilizada na estimativa do nível local da série, a idade média dos dados que são utilizados na estimativa da tendência local é proporcional a 1 946, embora não exatamente igual a . Neste caso, isto é 10.006 125. Isto não é um número muito preciso, na medida em que a precisão da estimativa de 946 é realmente de 3 casas decimais, mas é da mesma ordem geral de magnitude que o tamanho da amostra de 100, portanto Este modelo está calculando a média sobre bastante muita história em estimar a tendência. O gráfico de previsão abaixo mostra que o modelo LES estima uma tendência local ligeiramente maior no final da série do que a tendência constante estimada no modelo SEStrend. Além disso, o valor estimado de 945 é quase idêntico ao obtido pela montagem do modelo SES com ou sem tendência, de modo que este é quase o mesmo modelo. Agora, eles parecem previsões razoáveis para um modelo que é suposto ser estimar uma tendência local Se você 8220eyeball8221 esse enredo, parece que a tendência local virou para baixo no final da série O que aconteceu Os parâmetros deste modelo Foram calculados minimizando o erro quadrático das previsões de um passo à frente, e não as previsões a mais longo prazo, caso em que a tendência não faz muita diferença. Se tudo o que você está olhando são 1-passo-frente erros, você não está vendo a imagem maior de tendências sobre (digamos) 10 ou 20 períodos. A fim de obter este modelo mais em sintonia com a nossa extrapolação do globo ocular dos dados, podemos ajustar manualmente a tendência de alisamento constante para que ele usa uma linha de base mais curto para a estimativa de tendência. Por exemplo, se escolhemos definir 946 0,1, então a idade média dos dados usados na estimativa da tendência local é de 10 períodos, o que significa que estamos fazendo a média da tendência ao longo dos últimos 20 períodos. Here8217s o que o lote de previsão parece se definimos 946 0,1, mantendo 945 0,3. Isso parece intuitivamente razoável para esta série, embora seja provavelmente perigoso para extrapolar esta tendência mais de 10 períodos no futuro. E sobre as estatísticas de erro Aqui está uma comparação de modelos para os dois modelos mostrados acima, bem como três modelos SES. O valor ótimo de 945 para o modelo SES é de aproximadamente 0,3, mas resultados semelhantes (com ligeiramente mais ou menos responsividade, respectivamente) são obtidos com 0,5 e 0,2. (A) Holts linear exp. Alisamento com alfa 0,3048 e beta 0,008 (B) Holts linear exp. Alisamento com alfa 0,3 e beta 0,1 (C) Suavização exponencial simples com alfa 0,5 (D) Suavização exponencial simples com alfa 0,3 (E) Suavização exponencial simples com alfa 0,2 Suas estatísticas são quase idênticas, portanto, realmente não podemos fazer a escolha com base De erros de previsão de 1 passo à frente dentro da amostra de dados. Temos de recorrer a outras considerações. Se acreditarmos firmemente que faz sentido basear a estimativa da tendência atual sobre o que aconteceu nos últimos 20 períodos, podemos fazer um caso para o modelo LES com 945 0,3 e 946 0,1. Se queremos ser agnósticos quanto à existência de uma tendência local, então um dos modelos do SES pode ser mais fácil de explicar e também dar mais previsões de médio-caminho para os próximos 5 ou 10 períodos. Evidências empíricas sugerem que, se os dados já tiverem sido ajustados (se necessário) para a inflação, então pode ser imprudente extrapolar os resultados lineares de curto prazo Muito para o futuro. As tendências evidentes hoje podem afrouxar no futuro devido às causas variadas tais como a obsolescência do produto, a competição aumentada, e os abrandamentos cíclicos ou as ascensões em uma indústria. Por esta razão, a suavização exponencial simples geralmente desempenha melhor fora da amostra do que poderia ser esperado, apesar de sua extrapolação de tendência horizontal quotnaivequot. Modificações de tendência amortecida do modelo de suavização exponencial linear também são freqüentemente usadas na prática para introduzir uma nota de conservadorismo em suas projeções de tendência. O modelo LES com tendência a amortecimento pode ser implementado como um caso especial de um modelo ARIMA, em particular, um modelo ARIMA (1,1,2). É possível calcular intervalos de confiança em torno de previsões de longo prazo produzidas por modelos exponenciais de suavização, considerando-os como casos especiais de modelos ARIMA. A largura dos intervalos de confiança depende de (i) o erro RMS do modelo, (ii) o tipo de suavização (simples ou linear) (iii) o valor (S) da (s) constante (s) de suavização e (iv) o número de períodos à frente que você está prevendo. Em geral, os intervalos se espalham mais rapidamente à medida que o 945 fica maior no modelo SES e eles se espalham muito mais rápido quando se usa linear ao invés de alisamento simples. Este tópico é discutido mais adiante na seção de modelos ARIMA das notas. (Retornar ao início da página.) Documentação Método de média móvel 8212 Método de valor médio Janela deslizante (padrão) Ponderação exponencial Janela deslizante 8212 Uma janela de comprimento O comprimento da janela se move sobre os dados de entrada ao longo de cada canal. Para cada amostra a janela se move, o bloco calcula a média sobre os dados na janela. Ponderação exponencial 8212 O bloco multiplica as amostras por um conjunto de factores de ponderação. A magnitude dos fatores de ponderação diminui exponencialmente à medida que a idade dos dados aumenta, nunca atingindo zero. Para calcular a média, o algoritmo soma os dados ponderados. Especifique o comprimento da janela 8212 Sinalizador para especificar o comprimento da janela em (padrão) desativado Quando você seleciona essa caixa de seleção, o comprimento da janela deslizante é igual ao valor especificado em Comprimento da janela. Quando você desmarca essa caixa de seleção, o comprimento da janela deslizante é infinito. Neste modo, o bloco calcula a média da amostra atual e todas as amostras anteriores no canal. Comprimento da janela 8212 Comprimento da janela deslizante 4 (padrão) positivo escalar inteiro O comprimento da janela especifica o comprimento da janela deslizante. Este parâmetro aparece quando você seleciona a caixa de seleção Especificar comprimento da janela. Esquecendo o fator 8212 Fator de ponderação exponencial 0,9 (padrão) real escalar real na faixa (0,1 Este parâmetro se aplica quando você define o Método para Ponderação exponencial Um fator de esquecimento de 0,9 dá mais peso aos dados mais antigos do que um fator de esquecimento de 0,1 Simples usando 8212 Tipo de simulação a ser executada Geração de código (padrão) Execução interpretada Simulação Usando código C gerado. A primeira vez que você executa uma simulação, Simulink x00AE gera código C. O código C é reutilizado para simulações subseqüentes, desde que o modelo não mude. Esta opção requer tempo de inicialização adicional, mas fornece mais rápido Simulação de modelo usando o interpretador MATLAB x00AE Esta opção reduz o tempo de inicialização, mas tem velocidade de simulação mais lenta do que o código geração . Mais Sobre Algoritmos Método de Janela Deslizante No método de janela deslizante, a saída para cada amostra de entrada é a média da amostra atual e das amostras anteriores de Len - 1. Len é o comprimento da janela. Para calcular as primeiras saídas Len - 1, quando a janela ainda não tem dados suficientes, o algoritmo preenche a janela com zeros. Como exemplo, para calcular a média quando a segunda amostra de entrada chega, o algoritmo preenche a janela com Len - 2 zeros. O vector de dados, x. É então as duas amostras de dados seguido de Len - 2 zeros. Quando você define a propriedade SpecifyWindowLength como false. O algoritmo escolhe um comprimento de janela infinito. Neste modo, a saída é a média móvel da amostra atual e todas as amostras anteriores no canal. Método de ponderação exponencial No método de ponderação exponencial, a média móvel é calculada recursivamente utilizando estas fórmulas: w N. x03BB x03BB w N x2212 1. x03BB 1. x x00AF N. x03BB (1 x2212 1w N. x03BB) xx00AF N x2212 X03BB) x N x x00AF N. x03BB 8212 Média móvel na amostra atual x N 8212 Dados atuais amostra de entrada x x00AF N x2212 1. x03BB 8212 Média móvel na amostra anterior 955 8212 Fator w N. x03BB 8212 Fator de ponderação aplicado à amostra de dados corrente (1 x2212 1 w N. x03BB) x x00AF N x2212 1. x03BB 8212 Efeito dos dados anteriores sobre a média Para a primeira amostra, onde N 1, o algoritmo escolhe w N. x03BB 1. Para a próxima amostra, o fator de ponderação é atualizado e utilizado para calcular a média, de acordo com a equação recursiva. À medida que a idade dos dados aumenta, a magnitude do factor de ponderação diminui exponencialmente e nunca atinge zero. Em outras palavras, os dados recentes têm mais influência sobre a média atual do que os dados mais antigos. O valor do fator de esquecimento determina a taxa de variação dos fatores de ponderação. Um fator de esquecimento de 0,9 dá mais peso aos dados mais antigos do que um fator de esquecimento de 0,1. Um fator de esquecimento de 1,0 indica memória infinita. Todas as amostras anteriores recebem um peso igual. Objetos do sistema Selecione seu país
No comments:
Post a Comment